Algebra 2

2-01 Graph Quadratic Functions in Standard Form (2.1, 2.2)

Transformations

Translation

- or \qquad graph
- $y=(x-h)^{2}+k$
- h moves \qquad k moves \qquad

Reflection

- ___ graph over line
- $y=-\left(x^{2}\right)=-x^{2}$ reflects over \qquad
- $y=(-x)^{2}=x^{2}$ reflects over \qquad

Stretch/Shrink

- Stretches or shrinks graph
- $y=a x^{2}$

- $\quad a$ \qquad stretch
Describe the transformation of $f(x)=x^{2}$ represented by $g(x)=(x-1)^{2}+2$.

Describe the transformation of $f(x)=x$ represented by $g(x)=\left(\frac{1}{4} x\right)^{2}-2$

Properties of Quadratic Functions in Standard Form (Vertex Form)

- $f(x)=a(x-h)^{2}+k$
- Vertex is \qquad _.
- Wideness of parabola
- If $|a|>1$, then it looks \qquad than $y=x^{2}$
- If $0<|a|<1$, then it looks \qquad than $y=x^{2}$
- Opens Up/Down
- If $a>0$, the parabola opens \qquad .
- If $a<0$, the parabola opens \qquad

Graph a Quadratic Function

1. Find the \qquad . In standard form, the vertex is (h, k).
2. Create a \qquad with the vertex in the center.

3. the points from the table of values. At least five points are required.
4. Draw a \qquad through the points.
\qquad

Graph $f(x)=-x^{2}+3$

Graph $f(x)=\frac{1}{2}(x+1)^{2}-2$

Find a Quadratic Model

To find a quadratic model given vertex and another point,

1. Substitute the \qquad into standard form, $f(x)=a(x-h)^{2}+k$.
2. Substitute the other point for \qquad -.
3. Solve for \qquad —.
4. Write the \qquad function.
Write the quadratic function for the graph.

Algebra 2

2-02 Graph Quadratic Functions in General and Intercept Form (2.2)

Intercept form

- $y=a(x-p)(x-q)$
where p and q are the \qquad -.
- Axis of symmetry is \qquad between the x-intercepts.

$$
x=\frac{p+q}{2}
$$

- \qquad

$$
\left(\frac{p+q}{2}, f\left(\frac{p+q}{2}\right)\right)
$$

General Form

- $y=a x^{2}+b x+c$

- The \qquad of symmetry is

$$
x=-\frac{b}{2 a}
$$

-

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)
$$

Graph a Quadratic Function

1. Find the \qquad of symmetry and \qquad .
2. Make a \qquad using points on either side of the axis of symmetry.
3. \qquad the points from the table.
4. ___ the parabola through the points.

Graph $y=-2(x+2)(x-3)$

Graph $y=x^{2}-2 x-3$

1. Find the \qquad . These are p and q.
2. Find \qquad other point that the graph passes through. This is \qquad
3. Substitute the \qquad for p and q in intercept form $y=a(x-p)(x-q)$.
4. Substitute the point for \qquad -.
5. Solve for \qquad .
6. Write the \qquad by substituting p, q, and a into intercept form.
Write the quadratic function whose x-intercepts are -3 and 7 and passes through (0,21).

Write the quadratic function given in the graph.

Algebra 2

2-03 Graph Quadratic Inequalities (3.6)

Graph a Quadratic Inequality in Two Dimensions

1. Graph the inequality as if it was a \qquad
2. Decide whether the line is \qquad or \qquad .

- $\leq,=, \geq \rightarrow$ line.
- $<,>\rightarrow$ \qquad line.

3. Decide where to shade.
a. Method 1:
i. Pick a \qquad point \qquad on the line and \qquad it into the original inequality.
ii. If the point is a \qquad shade \qquad side of the parabola.
iii. If it is NOT a solution, shade the \qquad side.
b. Method 2:
i. Solve the inequality for \qquad -.
ii. If the inequality is $y>$, shade \qquad the parabola.
iii. If the inequality is $y<$, shade \qquad .

$$
\text { Graph } y>2(x-2)^{2}-5
$$

1. Graph each inequality on the \qquad coordinate plane.
2. The solution is all the points where all the shaded areas \qquad .
3. If there is no overlap of the shaded areas, then there is \qquad .

Solve $\left\{\begin{array}{l}y \geq x^{2}-4 \\ y \leq-x^{2}+\end{array}\right.$
$\left\{\begin{array}{l}y \leq x^{2}+2 x+3\end{array}\right.$

					个					
					\downarrow					

Algebra 2

2-04 Graph Polynomial Functions (4.1, 4.8)

Polynomial in One Variable

- Function that has \qquad variable and there are powers of that variable and all the powers are \qquad .
$4 x^{3}+2 x^{2}+2 x+5$
$100 x^{1234}-25 x^{345}+2 x+1$
$\frac{2}{x}$
$3 x y^{2}$

Degree

- power of the variable

What is the degree? $4 x^{3}+2 x^{2}+2 x+5$

Types of Polynomial Functions

Degree	Type	Example	Graph
0		$y=2$	
1		$y=2 x+1$	
2		$y=2 x^{2}+x-1$	
3		$y=2 x^{3}+x^{2}+x-1$	
4		$y=2 x^{4}+2 x^{2}-1$	

End Behavior

- Polynomial functions always go towards \qquad or \qquad at either \qquad of the graph

Even Degree	Leading Coefficient +	Leading Coefficient -
Odd Degree		

Graphing polynomial functions

1. Make a \qquad
2. the points
3. Make sure the graph matches the appropriate \qquad
Graph $f(x)=x^{3}+2 x-4$

- Points where the graph crosses the \qquad

Turning Points

- Local \qquad and \qquad (turn from going up to down or down to up)
- The graph of every polynomial function of degree n can have at most \qquad turning points.
- \qquad lets you find the turning points easily.
What are the x-intercepts and turning points?

Graph $f(x)=x^{3}-2 x^{2}-x+2$ and estimate the x-intercepts and turning points.

158 \#1, 3, 7, 19, 21, 23, 25, 29, 31; 210 \#1, 3, 7, 23, 25, 27, Mixed Review = 20

Algebra 2

2-05 Write Quadratic and Polynomial Models (4.9)

Find a Polynomial Model Given x-intercepts

1. Write a polynomial model in the form $y=a\left(x-k_{1}\right)\left(x-k_{2}\right)\left(x-k_{3}\right) \ldots$ where there is one factor per \qquad .
2. Substitute the x-intercepts for the \qquad .
3. Substitute the other point for \qquad -.
4. Solve for \qquad _.
5. Write the \qquad function.

Write a polynomial model with x-intercepts are $-2,1,3$ and $(0,2)$

Find the Degree of a Polynomial Using Finite Differences

1. Have a table of values with \qquad spaces \qquad .
2. Find the \qquad of successive \qquad .
3. Find the \qquad of successive \qquad from the previous step.
4. Repeat until all the differences in a step are the \qquad number (not zero).
5. The number of \qquad of differences is the \qquad of the function.
Find the degree of the polynomial passing through $(0,1),(1,6),(2,25),(3,70),(4,153),(5,286)$

Finding a model given several points

1. Use \qquad difference to find the \qquad .
2. Use either of the following methods.
a. Method 1: Solve a System of Equations by Hand (This lesson uses Method 2)
i. Write a general polynomial function of the given degree such as $y=a x^{3}+b x^{2}+c x+d$.
ii. Substitute a point for x and y to get an equation where the variables are the coefficients.
iii. Substitute another point in the general polynomial for x and y to get a second equation where the variables are the coefficients.
iv. Continue substituting points until there the same number of equations as coefficients.
V. Solve the system of equations using something like elimination to find the values of the coefficients.
vi. Write the equation by substituting the coefficients into the general polynomial.
b. Method 2: Use a \qquad on a \qquad
3. Push STAT and select Edit....
4. Enter the x-values in List 1 (L1) and the y-values in List 2 (L2).
5. To see the graph of the points
a. Push $Y=$ and clear any equations.
b. While still in $Y=$, go up and highlight Plot1 and press ENTER.
c. Press ZOOM and select ZoomStat.
6. Push STAT and move over to the CALC menu.
7. Select the type of regression.
8. Make sure the Xlist: is L1, the Ylist: is L2, the FreqList: is blank, and the Store RegEQ: is Y1.
a. Get Y1 by pressing VARS and select Y-VARS menu.
b. Select Function....
c. Select Y1.
9. Press Calculate
10. The calculator will display the equation. To see the graph of the points and line, press GRAPH.

Finding Linear Regression on a NumWorks graphing calculator

1. On the home screen select Regression.
2. In the Data tab, enter the points.
3. Move to the Graph tab.
4. The default is a linear regression and is displayed at the bottom of the screen. To change the regression type
a. Press OK.
b. Select Regression.
c. Select the desired regression type.

Find a polynomial function passing through $(1,-2),(2,2),(3,12),(4,28),(5,50),(6,78)$

Best-Fitting Polynomial Models

1. Real-life usually \qquad fit a model \qquad so finite differences \qquad work.
2. Use a \qquad find regressions of \qquad degrees.
3. Choose the one that seems to fit the data the best as shown on the \qquad .
217 \#1, 3, 5, 7, 9, 11, 13, 14, 17, 19, Mixed Review = 15
Created by Richard Wright - Andrews Academy

Algebra 2

2-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. 2-01
Describe the transformations of the graph.

1. $f(x)=(x-3)^{2}+5$
2. $f(x)=-2 x^{2}$

Graph.
3. $f(x)=(x+1)^{2}-4$

Write a quadratic function with the given vertex.
4. Vertex: $(2,-3)$; Passes through $(0,9)$

2-02
Identify the vertex.
5. $y=2(x-1)(x+3)$
6. $y=x^{2}+4 x-5$

Graph.
7. $y=\frac{1}{2} x^{2}+x-2$

Write a quadratic function with the given \boldsymbol{x}-intercepts.
8. x-intercepts: $(3,0)$ and $(7,0)$; Passes through $(4,3)$

2-03
(a) Is the line of the graph solid or dashed? (b) Is the graph shaded above or below the parabola?
9. $y \geq-2(x-4)(x+1)$
10. $y<x^{2}-5$

Graph.
11. $y>x^{2}+2 x+1$
12. $\left\{\begin{array}{l}y>\frac{1}{2}(x-1)^{2}-4 \\ y<-x^{2}+4\end{array}\right.$

2-04

Describe the end behavior of the graph.
13. $y=-7 x^{4}+2 x^{2}-15$
14. $y=2+3 x+5 x^{3}$
(a) Graph the function, (b) estimate the turning points, and (c) estimate the \boldsymbol{x}-intercepts.
15. $y=\frac{1}{2} x^{3}-\frac{1}{2} x^{2}-x+2$
16. $y=0.1 x^{4}-1.8 x^{2}+4$

2-05
Write a polynomial function with the given x-intercepts.
17. x-intercepts: $(2,0),(1,0),(-4,0)$; passes through: $(0,5)$
18. x-intercepts: $(-1,0),(0,0),(4,0)$; passes through: $(1,2)$

Use finite differences to find the degree of the function passing through the given points.
19.
$\boldsymbol{x} 01 \quad 2 \quad 345 \quad 6 \quad 7$
$\boldsymbol{y} 1-1-115111929$
20.
$\begin{array}{llllllll}x & 01 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$\boldsymbol{y} 0-2-10-30-68-130-222-350$
\qquad

Answers

1. Translated 3 right and 5 up
2. Reflected over x-axis and vertical stretch by factor of 2
3.
4. $y=3(x-2)^{2}-3$
5. $(-1,-8)$
6.
7.

$y=-(x-3)(x-7)$
9. Solid, shaded above
10. Dashed, shaded below

11.
12.

13. Falls to the left, falls to the right
14. Falls to the left, rises to the right
15.

Max: $(-0.5,2.3)$, Min: $(1.2,0.9) ; x^{-}$ int: $(-1.6,0)$
16.

Max: $(0,4)$, Min: $(-3,-4.1),(3$,
$-4.1)$; x-int: $(-3.9,0),(-1.6,0)$,
$(1.6,0),(3.9,0)$
17. $y=\frac{5}{8}(x-2)(x-1)(x+4)$
18. $y=-\frac{1}{3}(x+1)(x)(x-4)$
19. 2
20. 3

